Continuous state branching processes in random environment: The Brownian case
S. Palau and
J.C. Pardo
Stochastic Processes and their Applications, 2017, vol. 127, issue 3, 957-994
Abstract:
We consider continuous-state branching processes that are perturbed by a Brownian motion. These processes are constructed as the unique strong solution of a stochastic differential equation. The long-term behaviours are studied. In the stable case, the extinction and explosion probabilities are given explicitly. We find three regimes for the asymptotic behaviour of the explosion probability and five regimes for the asymptotic behaviour of the extinction probability. In the supercritical regime, the process conditioned on eventual extinction has three regimes for the asymptotic behaviour of the extinction probability. Finally, the process conditioned on non-extinction and the process with immigration are given.
Keywords: Continuous state branching processes in random environment; Brownian motion; Explosion and extinction probabilities; Exponential functional of Brownian motion; Q-process; Supercritical process conditioned on eventual extinction; Continuous state branching processes with immigration in random environment (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301181
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:3:p:957-994
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.07.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().