Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations
E. Gobet and
P. Turkedjiev
Stochastic Processes and their Applications, 2017, vol. 127, issue 4, 1171-1203
Abstract:
We design an importance sampling scheme for backward stochastic differential equations (BSDEs) that minimizes the conditional variance occurring in least-squares Monte-Carlo (LSMC) algorithms. The Radon–Nikodym derivative depends on the solution of BSDE, and therefore it is computed adaptively within the LSMC procedure. To allow robust error estimates w.r.t. the unknown change of measure, we properly randomize the initial value of the forward process. We introduce novel methods to analyze the error: firstly, we establish norm stability results due to the random initialization; secondly, we develop refined concentration-of-measure techniques to capture the variance reduction. Our theoretical results are supported by numerical experiments.
Keywords: Backward stochastic differential equations; Empirical regressions; Importance sampling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301235
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:4:p:1171-1203
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.07.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().