Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment
Ion Grama,
Quansheng Liu and
Eric Miqueu
Stochastic Processes and their Applications, 2017, vol. 127, issue 4, 1255-1281
Abstract:
Let (Zn) be a supercritical branching process in a random environment ξ=(ξn). We establish a Berry–Esseen bound and a Cramér’s type large deviation expansion for logZn under the annealed law P. We also improve some earlier results about the harmonic moments of the limit variable W=limn→∞Wn, where Wn=Zn/EξZn is the normalized population size.
Keywords: Branching processes; Random environment; Harmonic moments; Stein’s method; Berry–Esseen bound; Change of measure (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301260
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:4:p:1255-1281
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.07.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().