EconPapers    
Economics at your fingertips  
 

Two-parameter process limits for an infinite-server queue with arrival dependent service times

Guodong Pang and Yuhang Zhou

Stochastic Processes and their Applications, 2017, vol. 127, issue 5, 1375-1416

Abstract: We study an infinite-server queue with a general arrival process and a large class of general time-varying service time distributions. Specifically, customers’ service times are conditionally independent given their arrival times, and each customer’s service time, conditional on her arrival time, has a general distribution function. We prove functional limit theorems for the two-parameter processes Xe(t,y) and Xr(t,y) that represent the numbers of customers in the system at time t that have received an amount of service less than or equal to y, and that have a residual amount of service strictly greater than y, respectively. When the arrival process and the initial content process both have continuous Gaussian limits, we show that the two-parameter limit processes are continuous Gaussian random fields. In the proofs, we introduce a new class of sequential empirical processes with conditionally independent variables of non-stationary distributions, and employ the moment bounds resulting from the method of chaining for the two-parameter stochastic processes.

Keywords: Gt/Gt/∞ queues; Arrival dependent services; Two-parameter processes; Functional limit theorems; Gaussian random fields; Method of chaining (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301314
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:5:p:1375-1416

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.08.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:5:p:1375-1416