Ergodic decompositions of stationary max-stable processes in terms of their spectral functions
Clément Dombry and
Zakhar Kabluchko
Stochastic Processes and their Applications, 2017, vol. 127, issue 6, 1763-1784
Abstract:
We revisit conservative/dissipative and positive/null decompositions of stationary max-stable processes. Originally, both decompositions were defined in an abstract way based on the underlying non-singular flow representation. We provide simple criteria which allow to tell whether a given spectral function belongs to the conservative/dissipative or positive/null part of the de Haan spectral representation. Specifically, we prove that a spectral function is null-recurrent iff it converges to 0 in the Cesàro sense. For processes with locally bounded sample paths we show that a spectral function is dissipative iff it converges to 0. Surprisingly, for such processes a spectral function is integrable a.s. iff it converges to 0 a.s. Based on these results, we provide new criteria for ergodicity, mixing, and existence of a mixed moving maximum representation of a stationary max-stable process in terms of its spectral functions. In particular, we study a decomposition of max-stable processes which characterizes the mixing property.
Keywords: Max-stable random process; de Haan representation; Non-singular flow; Conservative/dissipative decomposition; Positive/null decomposition; Ergodic process; Mixing process; Mixed moving maximum process (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301764
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:6:p:1763-1784
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.10.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().