Multi-class oscillating systems of interacting neurons
Susanne Ditlevsen and
Eva Löcherbach
Stochastic Processes and their Applications, 2017, vol. 127, issue 6, 1840-1869
Abstract:
We consider multi-class systems of interacting nonlinear Hawkes processes modeling several large families of neurons and study their mean field limits. As the total number of neurons goes to infinity we prove that the evolution within each class can be described by a nonlinear limit differential equation driven by a Poisson random measure, and state associated central limit theorems. We study situations in which the limit system exhibits oscillatory behavior, and relate the results to certain piecewise deterministic Markov processes and their diffusion approximations.
Keywords: Multivariate nonlinear Hawkes processes; Mean-field approximations; Piecewise deterministic Markov processes; Multi-class systems; Oscillations; Diffusion approximation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301739
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:6:p:1840-1869
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.09.013
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().