Cycle symmetry, limit theorems, and fluctuation theorems for diffusion processes on the circle
Hao Ge,
Chen Jia and
Da-Quan Jiang
Stochastic Processes and their Applications, 2017, vol. 127, issue 6, 1897-1925
Abstract:
Cyclic structure and dynamics are of great interest in both the fields of stochastic processes and nonequilibrium statistical physics. In this paper, we find a new symmetry of the Brownian motion named as the quasi-time-reversal invariance. It turns out that such an invariance of the Brownian motion is the key to prove the cycle symmetry for diffusion processes on the circle, which says that the distributions of the forming times of the forward and backward cycles, given that the corresponding cycle is formed earlier than the other, are exactly the same. With the aid of the cycle symmetry, we prove the strong law of large numbers, functional central limit theorem, and large deviation principle for the sample circulations and net circulations of diffusion processes on the circle. The cycle symmetry is further applied to obtain various types of fluctuation theorems for the sample circulations, net circulation, and entropy production rate.
Keywords: Excursion theory; Bessel process; Haldane equality; Cycle flux; Nonequilibrium (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:6:p:1897-1925
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.09.011
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().