EconPapers    
Economics at your fingertips  
 

A central limit theorem for the Euler integral of a Gaussian random field

Gregory Naitzat and Robert J. Adler

Stochastic Processes and their Applications, 2017, vol. 127, issue 6, 2036-2067

Abstract: Euler integrals of deterministic functions have recently been shown to have a wide variety of possible applications, including signal processing, data aggregation and network sensing. Adding random noise to these scenarios, as is natural in the majority of applications, leads to a need for statistical analysis, the first step of which requires asymptotic distribution results for estimators. The first such result is provided in this paper, as a central limit theorem for the Euler integral of pure, Gaussian, noise fields.

Keywords: Random field; Euler integral; Gaussian processes; Central limit theorem (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:6:p:2036-2067

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.09.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:6:p:2036-2067