The jamming constant of uniform random graphs
Paola Bermolen,
Matthieu Jonckheere and
Pascal Moyal
Stochastic Processes and their Applications, 2017, vol. 127, issue 7, 2138-2178
Abstract:
By constructing jointly a random graph and an associated exploration process, we define the dynamics of a “parking process” on a class of uniform random graphs as a measure-valued Markov process, representing the empirical degree distribution of non-explored nodes. We then establish a functional law of large numbers for this process as the number of vertices grows to infinity, allowing us to assess the jamming constant of the considered random graphs, i.e. the size of the maximal independent set discovered by the exploration algorithm. This technique, which can be applied to any uniform random graph with a given–possibly unbounded–degree distribution, can be seen as a generalization in the space of measures, of the differential equation method introduced by Wormald.
Keywords: Random graph; Configuration model; Parking process; Measure-valued Markov process; Hydrodynamic limit (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916301806
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:7:p:2138-2178
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.10.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().