EconPapers    
Economics at your fingertips  
 

Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing

Boris Buchmann, Benjamin Kaehler, Ross Maller and Alexander Szimayer

Stochastic Processes and their Applications, 2017, vol. 127, issue 7, 2208-2242

Abstract: We unify and extend a number of approaches related to constructing multivariate Madan–Seneta Variance-Gamma models for option pricing. Complementing Grigelionis’ (2007) class, an overarching model is derived by subordinating multivariate Brownian motion to a subordinator from Thorin’s (1977) [58, 59] class of generalised Gamma convolutions. Multivariate classes developed by Pérez-Abreu and Stelzer (2014), Semeraro (2008) and Guillaume (2013) are submodels. The classes are shown to be invariant under Esscher transforms, and quite explicit expressions for canonical measures are obtained, which permit applications such as option pricing using PIDEs or tree based methodologies. We illustrate with best-of and worst-of European and American options on two assets.

Keywords: Lévy process; Variance-Gamma; Multivariate subordination; Generalised Gamma convolutions; Thorin measure; Esscher transformation; Esscher invariance; Superposition; Option pricing (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491630196X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:7:p:2208-2242

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.10.008

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:7:p:2208-2242