EconPapers    
Economics at your fingertips  
 

Stochastic maximum principle for SPDEs with delay

Giuseppina Guatteri, Federica Masiero and Carlo Orrieri

Stochastic Processes and their Applications, 2017, vol. 127, issue 7, 2396-2427

Abstract: In this paper we develop necessary conditions for optimality, in the form of the stochastic Pontryagin maximum principle, for the optimal control problem of a class of infinite dimensional stochastic evolution equations with delay in the state. In the cost functional we allow the final cost to depend on the history of the state. To treat such kind of cost functionals we introduce a new form of anticipated backward stochastic differential equations which plays the role of dual equation associated to the control problem.

Keywords: Stochastic maximum principle; Stochastic delay differential equation; Anticipated backward stochastic differential equations; Infinite dimensions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916302174
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:7:p:2396-2427

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2016.11.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:7:p:2396-2427