Fluctuations, stability and instability of a distributed particle filter with local exchange
Kari Heine and
Nick Whiteley
Stochastic Processes and their Applications, 2017, vol. 127, issue 8, 2508-2541
Abstract:
We study a distributed particle filter proposed by Bolić et al. (2005). This algorithm involves m groups of M particles, with interaction between groups occurring through a “local exchange” mechanism. We establish a central limit theorem in the regime where M is fixed and m→∞. A formula we obtain for the asymptotic variance can be interpreted in terms of colliding Markov chains, enabling analytic and numerical evaluations of how the asymptotic variance behaves over time, with comparison to a benchmark algorithm consisting of m independent particle filters. We prove that subject to regularity conditions, when m is fixed both algorithms converge time-uniformly at rate M−1/2. Through use of our asymptotic variance formula we give counter-examples satisfying the same regularity conditions to show that when M is fixed neither algorithm, in general, converges time-uniformly at rate m−1/2.
Keywords: Hidden Markov model; Particle filter; Central limit theorem; Asymptotic variance; Local exchange; Sequential Monte Carlo (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916302137
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:8:p:2508-2541
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.11.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().