Interacting generalized Friedman’s urn systems
Giacomo Aletti and
Andrea Ghiglietti
Stochastic Processes and their Applications, 2017, vol. 127, issue 8, 2650-2678
Abstract:
We consider systems of interacting Generalized Friedman’s Urns (GFUs) having irreducible mean replacement matrices. The interaction is modeled through the probability to sample the colors from each urn, that is defined as convex combination of the urn proportions in the system. From the weights of these combinations we individuate subsystems of urns evolving with different behaviors. We provide a complete description of the asymptotic properties of urn proportions in each subsystem by establishing limiting proportions, convergence rates and Central Limit Theorems. The main proofs are based on a detailed eigenanalysis and stochastic approximation techniques.
Keywords: Interacting systems; Urn models; Strong consistency; Central Limit Theorems; Stochastic approximation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414916302204
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:8:p:2650-2678
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2016.12.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().