EconPapers    
Economics at your fingertips  
 

Pathwise estimates for an effective dynamics

Frédéric Legoll, Tony Lelièvre and Stefano Olla

Stochastic Processes and their Applications, 2017, vol. 127, issue 9, 2841-2863

Abstract: Starting from the overdamped Langevin dynamics in Rn, dXt=−∇V(Xt)dt+2β−1dWt, we consider a scalar Markov process ξt which approximates the dynamics of the first component Xt1. In the previous work (Legoll and Lelièvre, 2010), the fact that (ξt)t≥0 is a good approximation of (Xt1)t≥0 is proven in terms of time marginals, under assumptions quantifying the timescale separation between the first component and the other components of Xt. Here, we prove an upper bound on the trajectorial error E(sup0≤t≤T|Xt1−ξt|) for any T>0, under a similar set of assumptions. We also show that the technique of proof can be used to obtain quantitative averaging results.

Keywords: Effective dynamics for SDEs; Pathwise estimates; Averaging (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300042
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:9:p:2841-2863

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.01.001

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:127:y:2017:i:9:p:2841-2863