Strong-majority bootstrap percolation on regular graphs with low dissemination threshold
Dieter Mitsche,
Xavier Pérez-Giménez and
Paweł Prałat
Stochastic Processes and their Applications, 2017, vol. 127, issue 9, 3110-3134
Abstract:
Consider the following model of strong-majority bootstrap percolation on a graph. Let r≥1 be some integer, and p∈[0,1]. Initially, every vertex is active with probability p, independently from all other vertices. Then, at every step of the process, each vertex v of degree deg(v) becomes active if at least (deg(v)+r)/2 of its neighbours are active. Given any arbitrarily small p>0 and any integer r, we construct a family of d=d(p,r)-regular graphs such that with high probability all vertices become active in the end. In particular, the case r=1 answers a question and disproves a conjecture of Rapaport et al. (2011).
Keywords: Bootstrap percolation; Regular graphs; Strong majority rule (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917300248
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:127:y:2017:i:9:p:3110-3134
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.02.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().