On uniform closeness of local times of Markov chains and i.i.d. sequences
Diego F. de Bernardini,
Christophe Gallesco and
Serguei Popov
Stochastic Processes and their Applications, 2018, vol. 128, issue 10, 3221-3252
Abstract:
In this paper we consider the field of local times of a discrete-time Markov chain on a general state space, and obtain uniform (in time) upper bounds on the total variation distance between this field and the one of a sequence of n i.i.d. random variables with law given by the invariant measure of that Markov chain. The proof of this result uses a refinement of the soft local time method of Popov and Teixeira (2015).
Keywords: Occupation times; Soft local times; Decoupling; Empirical processes (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302752
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:10:p:3221-3252
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.10.015
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().