Fluctuations of Omega-killed spectrally negative Lévy processes
Bo Li and
Zbigniew Palmowski
Stochastic Processes and their Applications, 2018, vol. 128, issue 10, 3273-3299
Abstract:
In this paper we solve the exit problems for (reflected) spectrally negative Lévy processes, which are exponentially killed with a killing intensity dependent on the present state of the process and analyze respective resolvents. All identities are given in terms of new generalizations of scale functions. For the particular cases ω(x)=q and ω(x)=q1(a,b)(x), we obtain results for the classical exit problems and the Laplace transforms of the occupation times in a given interval, until first passage times, respectively. Our results can also be applied to find the bankruptcy probability in the so-called Omega model, where bankruptcy occurs at rate ω(x) when the Lévy surplus process is at level x<0. Finally, we apply these results to obtain some exit identities for spectrally positive self-similar Markov processes. The main method throughout all the proofs relies on the classical fluctuation identities for Lévy processes, the Markov property and some basic properties of a Poisson process.
Keywords: Lévy processes; Omega model; Occupation time; Laplace transform; Fluctuation theory; Self-similar process (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491730279X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:10:p:3273-3299
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.10.018
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().