EconPapers    
Economics at your fingertips  
 

Extinction properties of multi-type continuous-state branching processes

Andreas E. Kyprianou and Sandra Palau

Stochastic Processes and their Applications, 2018, vol. 128, issue 10, 3466-3489

Abstract: Recently in Barczy et al. (2015), the notion of a multi-type continuous-state branching process (with immigration) having d-types was introduced as a solution to an d-dimensional vector-valued SDE. Preceding that, work on affine processes, originally motivated by mathematical finance, in Duffie et al. (2003) also showed the existence of such processes. See also more recent contributions in this direction due to Gabrielli and Teichmann (2014) and Caballero and Pérez Garmendia (2017). Older work on multi-type continuous-state branching processes is more sparse but includes Watanabe (1969) and Ma (2013), where only two types are considered. In this paper we take a completely different approach and consider multi-type continuous-state branching process, now allowing for up to a countable infinity of types, defined instead as a super Markov chain with both local and non-local branching mechanisms. In the spirit of Engländer and Kypriano (2004) we explore their extinction properties and pose a number of open problems.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302843
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:10:p:3466-3489

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.11.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:10:p:3466-3489