Analysis of random walks in dynamic random environments via L2-perturbations
L. Avena,
O. Blondel and
A. Faggionato
Stochastic Processes and their Applications, 2018, vol. 128, issue 10, 3490-3530
Abstract:
We consider random walks in dynamic random environments given by Markovian dynamics on Zd. We assume that the environment has a stationary distribution μ and satisfies the Poincaré inequality w.r.t. μ. The random walk is a perturbation of another random walk (called “unperturbed”). We assume that also the environment viewed from the unperturbed random walk has stationary distribution μ. Both perturbed and unperturbed random walks can depend heavily on the environment and are not assumed to be finite-range. We derive a law of large numbers, an averaged invariance principle for the position of the walker and a series expansion for the asymptotic speed. We also provide a condition for non-degeneracy of the diffusion, and describe in some details equilibrium and convergence properties of the environment seen by the walker. All these results are based on a more general perturbative analysis of operators that we derive in the context of L2- bounded perturbations of Markov processes by means of the so-called Dyson–Phillips expansion.
Keywords: Perturbations of Markov processes; Poincaré inequality; Dyson–Phillips expansion; Random walk in dynamic random environment; Asymptotic velocity; Invariance principle (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302983
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:10:p:3490-3530
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.11.010
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().