The distribution of the spine of a Fleming–Viot type process
Mariusz Bieniek and
Krzysztof Burdzy
Stochastic Processes and their Applications, 2018, vol. 128, issue 11, 3751-3777
Abstract:
We show uniqueness of the spine of a Fleming–Viot particle system under minimal assumptions on the driving process. If the driving process is a continuous time Markov process on a finite space, we show that asymptotically, when the number of particles goes to infinity, the distribution of the spine converges to that of the driving process conditioned to stay alive forever, the branching rate for the spine is twice that of a generic particle in the system, and every side branch has the distribution of the unconditioned generic branching tree.
Keywords: Fleming–Viot particle system; Spine (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917303095
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:11:p:3751-3777
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.12.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().