EconPapers    
Economics at your fingertips  
 

Cutoffs for product chains

Guan-Yu Chen and Takashi Kumagai

Stochastic Processes and their Applications, 2018, vol. 128, issue 11, 3840-3879

Abstract: We consider products of ergodic Markov chains and discuss their cutoffs in total variation. Our framework is general in that rates to pick up coordinates are not necessary equal, and different coordinates may correspond to distinct chains. We give necessary and sufficient conditions for cutoffs of product chains in terms of those of coordinate chains under certain conditions. A comparison of mixing times between the product chain and its coordinate chains is made in detail as well. Examples are given to show that neither cutoffs for product chains nor for coordinate chains imply others in general.

Keywords: Product chains; Total variation and Hellinger distances; Cutoffs (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300024
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:11:p:3840-3879

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.01.002

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:11:p:3840-3879