EconPapers    
Economics at your fingertips  
 

Lifschitz singularity for subordinate Brownian motions in presence of the Poissonian potential on the Sierpiński gasket

Kamil Kaleta and Katarzyna Pietruska-Pałuba

Stochastic Processes and their Applications, 2018, vol. 128, issue 11, 3897-3939

Abstract: We establish the Lifschitz-type singularity around the bottom of the spectrum for the integrated density of states for a class of subordinate Brownian motions in presence of the nonnegative Poissonian random potentials, possibly of infinite range, on the Sierpiński gasket. We also study the long-time behaviour for the corresponding averaged Feynman–Kac functionals.

Keywords: Subordinate Brownian motion; Sierpiński gasket; Random Feynman–Kac semigroup; Schrödinger operator; Random potential; Integrated density of states; Eigenvalues; Reflected process (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300036
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:11:p:3897-3939

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.01.003

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:11:p:3897-3939