An Edgeworth expansion for functionals of Gaussian fields and its applications
Yoon Tae Kim and
Hyun Suk Park
Stochastic Processes and their Applications, 2018, vol. 128, issue 12, 3967-3999
Abstract:
This paper is concerned with the rate of convergence in the normal approximation of the sequence {Fn}, where each Fn is a functional of an infinite-dimensional Gaussian field. We develop new and powerful techniques for computing the exact rate of convergence in distribution with respect to the Kolmogorov distance. As a tool for our works, the Edgeworth expansion of general orders, with an explicitly expressed remainder, will be obtained, and this remainder term will be controlled to find upper and lower bounds of the Kolmogorov distance in the case of an arbitrary sequence {Fn}. As applications, we provide the optimal fourth moment theorem of the sequence {Fn} in the case when {Fn} is a sequence of random variables living in a fixed Wiener chaos or a finite sum of Wiener chaoses. In the former case, our results show that the conditions given in this paper seem more natural and minimal than ones appeared in the previous works.
Keywords: Malliavin calculus; Fourth moment theorem; Kolmogorov distance; Multiple stochastic integral; Stein’s equation; Edgeworth expansion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414918300061
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:12:p:3967-3999
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2018.01.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().