EconPapers    
Economics at your fingertips  
 

Stable windings at the origin

Andreas E. Kyprianou and Stavros M. Vakeroudis

Stochastic Processes and their Applications, 2018, vol. 128, issue 12, 4309-4325

Abstract: In 1996, Bertoin and Werner demonstrated a functional limit theorem, characterising the windings of planar isotropic stable processes around the origin for large times, thereby complementing known results for planar Brownian motion. The question of windings at small times can be handled using scaling. Nonetheless we examine the case of windings at the origin using new techniques from the theory of self-similar Markov processes. This allows us to understand upcrossings of (not necessarily symmetric) stable processes over the origin for large and small times in the one-dimensional setting.

Keywords: Stable processes; Winding numbers; Self-similarity; Lamperti transform; Duality; Time change; Riesz–Bogdan–Żak transform; Upcrossings (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491830019X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:12:p:4309-4325

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2018.02.004

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:12:p:4309-4325