Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes
Tomasz Grzywny and
Mateusz Kwaśnicki
Stochastic Processes and their Applications, 2018, vol. 128, issue 1, 1-38
Abstract:
In the first part of this article, we prove two-sided estimates of hitting probabilities of balls, the potential kernel and the Green function for a ball for general isotropic unimodal Lévy processes. We also prove a supremum estimate and a regularity result for functions harmonic with respect to a general isotropic unimodal Lévy process.
Keywords: Potential theory; Lévy process; Isotropic unimodal distribution; Hitting time; Harnack inequality (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301060
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:1:p:1-38
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.04.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().