EconPapers    
Economics at your fingertips  
 

Ergodic properties of generalized Ornstein–Uhlenbeck processes

Péter Kevei

Stochastic Processes and their Applications, 2018, vol. 128, issue 1, 156-181

Abstract: We investigate ergodic properties of the solution of the SDE dVt=Vt−dUt+dLt, where (U,L) is a bivariate Lévy process. This class of processes includes the generalized Ornstein–Uhlenbeck processes. We provide sufficient conditions for ergodicity, and for subexponential and exponential convergence to the invariant probability measure. We use the Foster–Lyapunov method. The drift conditions are obtained using the explicit form of the generator of the continuous process. In some special cases the optimality of our results can be shown.

Keywords: Generalized Ornstein–Uhlenbeck processes; Foster–Lyapunov technique; Exponential / subexponential ergodicity; Petite set (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301242
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:1:p:156-181

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.04.010

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:1:p:156-181