Semimartingale: Itô or not ?
Yacine Ait-Sahalia and
Jean Jacod
Stochastic Processes and their Applications, 2018, vol. 128, issue 1, 233-254
Abstract:
Itô semimartingales are the semimartingales whose characteristics are absolutely continuous with respect to Lebesgue measure. We study the importance of this assumption for statistical inference on a discretely sampled semimartingale in terms of the identifiability of its characteristics, their estimation, and propose tests of the Itô property against the non-Itô alternative when the observed semimartingale is continuous, or discontinuous with finite activity jumps, and under a number of technical assumptions.
Keywords: Semimartingale; Itô; Discrete sampling; High frequency; Absolute continuity; Cantor set (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301205
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:1:p:233-254
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.04.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().