The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields
Ercan Sönmez
Stochastic Processes and their Applications, 2018, vol. 128, issue 2, 426-444
Abstract:
Let {X(t):t∈Rd} be a multivariate operator-self-similar random field with values in Rm. Such fields were introduced in [22] and satisfy the scaling property {X(cEt):t∈Rd}=d{cDX(t):t∈Rd} for all c>0, where E is a d×d real matrix and D is an m×m real matrix. We solve an open problem in [22] by calculating the Hausdorff dimension of the range and graph of a trajectory over the unit cube K=[0,1]d in the Gaussian case. In particular, we enlighten the property that the Hausdorff dimension is determined by the real parts of the eigenvalues of E and D as well as the multiplicity of the eigenvalues of E and D.
Keywords: Fractional random fields; Gaussian random fields; Operator-self-similarity; Modulus of continuity; Hausdorff dimension (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301400
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:2:p:426-444
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.05.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().