Ornstein–Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility
Fred Espen Benth,
Barbara Rüdiger and
Andre Süss
Stochastic Processes and their Applications, 2018, vol. 128, issue 2, 461-486
Abstract:
We propose a non-Gaussian operator-valued extension of the Barndorff-Nielsen and Shephard stochastic volatility dynamics, defined as the square-root of an operator-valued Ornstein–Uhlenbeck process with Lévy noise and bounded drift. We derive conditions for the positive definiteness of the Ornstein–Uhlenbeck process, where in particular we must restrict to operator-valued Lévy processes with “non-decreasing paths”. It turns out that the volatility model allows for an explicit calculation of its characteristic function, showing an affine structure. We introduce another Hilbert space-valued Ornstein–Uhlenbeck process with Wiener noise perturbed by this class of stochastic volatility dynamics. Under a strong commutativity condition between the covariance operator of the Wiener process and the stochastic volatility, we can derive an analytical expression for the characteristic functional of the Ornstein–Uhlenbeck process perturbed by stochastic volatility if the noises are independent. The case of operator-valued compound Poisson processes as driving noise in the volatility is discussed as a particular example of interest. We apply our results to futures prices in commodity markets, where we discuss our proposed stochastic volatility model in light of ambit fields.
Keywords: Stochastic volatility; Hilbert-valued stochastic processes; Ornstein–Uhlenbeck processes; Forward price dynamics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:2:p:461-486
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.05.005
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().