A regularity theory for quasi-linear Stochastic PDEs in weighted Sobolev spaces
Ildoo Kim and
Kyeong-Hun Kim
Stochastic Processes and their Applications, 2018, vol. 128, issue 2, 622-643
Abstract:
We study the second-order quasi-linear stochastic partial differential equations (SPDEs) defined on C1-domains. The coefficients are random functions depending on t,x and the unknown solutions. We prove the uniqueness and existence of solutions in appropriate Sobolev spaces, and in addition, we obtain Lp and Hölder estimates of both the solution and its gradient.
Keywords: Nonlinear stochastic partial differential equations; Equations of divergence type; Weighted Sobolev space (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:2:p:622-643
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.06.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().