Dynamic uniqueness for stochastic chains with unbounded memory
Christophe Gallesco,
Sandro Gallo and
Daniel Y. Takahashi
Stochastic Processes and their Applications, 2018, vol. 128, issue 2, 689-706
Abstract:
We say that a probability kernel exhibits dynamic uniqueness (DU) if all the stochastic chains starting from a fixed past coincide on the future tail σ-algebra. Our first theorem is a set of properties that are pairwise equivalent to DU which allow us to understand how it compares to other more classical concepts. In particular, we prove that DU is equivalent to a weak-ℓ2 summability condition on the kernel. As a corollary to this theorem, we prove that the Bramson–Kalikow and the long-range Ising models both exhibit DU if and only if their kernels are ℓ2 summable. Finally, if we weaken the condition for DU, asking for coincidence on the future σ-algebra for almost every pair of pasts, we obtain a condition that is equivalent to β-mixing (weak-Bernoullicity) of the compatible stationary chain. As a consequence, we show that a modification of the weak-ℓ2 summability condition on the kernel is equivalent to the β-mixing of the compatible stationary chain.
Keywords: Stochastic chains with unbounded memory; Phase transition; Coupling; β-mixing; Bramson–Kalikow; Total variation distance (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491730159X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:2:p:689-706
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.06.004
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().