Conjugate processes: Theory and application to risk forecasting
Eduardo Horta and
Flavio Ziegelmann
Stochastic Processes and their Applications, 2018, vol. 128, issue 3, 727-755
Abstract:
Many dynamical phenomena display a cyclic behavior, in the sense that time can be partitioned into units within which distributional aspects of a process are homogeneous. In this paper, we introduce a class of models – called conjugate processes – allowing the sequence of marginal distributions of a cyclic, continuous-time process to evolve stochastically in time. The connection between the two processes is given by a fundamental compatibility equation. Key results include Laws of Large Numbers in the presented framework. We provide a constructive example which illustrates the theory, and give a statistical implementation to risk forecasting in financial data.
Keywords: Random measure; Covariance operator; Dimension reduction; Functional time series; High frequency financial data; Risk forecasting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301576
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:3:p:727-755
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.06.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().