EconPapers    
Economics at your fingertips  
 

Time change equations for Lévy-type processes

Paul Krühner and Alexander Schnurr

Stochastic Processes and their Applications, 2018, vol. 128, issue 3, 963-978

Abstract: We consider time change equations for Lévy-type processes. In this context we generalize the results of Böttcher et al. (2013) significantly. Namely, we are able to incorporate measurable instead of continuous multipliers. This opens a gate to find whole classes of symbols for which corresponding processes do exist. In order to establish our results we carefully analyze the connection between time change equations and classical initial value problems. This relationship allows us to transfer well-known results from this classical subject of pure mathematics into the theory of stochastic processes. On the way to prove our main theorem we establish generalizations of results on paths of Lévy-type processes.

Keywords: Lévy-type process; Symbol; Random time change; Multiplicative perturbation (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301667
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:3:p:963-978

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.06.011

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:3:p:963-978