Convergence results for a class of time-varying simulated annealing algorithms
Mathieu Gerber and
Luke Bornn
Stochastic Processes and their Applications, 2018, vol. 128, issue 4, 1073-1094
Abstract:
We provide a set of conditions which ensure the almost sure convergence of a class of simulated annealing algorithms on a bounded set X⊂Rd based on a time-varying Markov kernel. The class of algorithms considered in this work encompasses the one studied in Bélisle (1992) and Yang (2000) as well as its derandomized version recently proposed by Gerber and Bornn (2016). To the best of our knowledge, the results we derive are the first examples of almost sure convergence results for simulated annealing based on a time-varying kernel. In addition, the assumptions on the Markov kernel and on the cooling schedule have the advantage of being trivial to verify in practice.
Keywords: Digital sequences; Global optimization; Simulated annealing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:4:p:1073-1094
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.07.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().