Bounds to the normal for proximity region graphs
Larry Goldstein,
Tobias Johnson and
Raphaël Lachièze-Rey
Stochastic Processes and their Applications, 2018, vol. 128, issue 4, 1208-1237
Abstract:
In a proximity region graph G in Rd, two distinct points x,y of a point process μ are connected when the ‘forbidden region’ S(x,y) these points determine has empty intersection with μ. The Gabriel graph, where S(x,y) is the open disk with diameter the line segment connecting x and y, is one canonical example. When μ is a Poisson or binomial process, under broad conditions on the regions S(x,y), bounds on the Kolmogorov and Wasserstein distances to the normal are produced for functionals of G, including the total number of edges and the total length. Variance lower bounds, not requiring strong stabilization, are also proven to hold for a class of such functionals.
Keywords: Forbidden region graph; Berry–Esseen bounds; Stabilization; Poisson functionals (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301709
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:4:p:1208-1237
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.07.002
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().