Paracontrolled calculus and Funaki–Quastel approximation for the KPZ equation
Masato Hoshino
Stochastic Processes and their Applications, 2018, vol. 128, issue 4, 1238-1293
Abstract:
In this paper, we consider the approximating KPZ equation introduced by Funaki and Quastel (2015), which is suitable for studying invariant measures. They showed that the stationary solution of the approximating equation converges to the Cole–Hopf solution of the KPZ equation with extra term 124t. On the other hand, Gubinelli and Perkowski (2017) gave a pathwise meaning to the KPZ equation as an application of the paracontrolled calculus. We show that Funaki and Quastel’s result is extended to nonstationary solutions by using the paracontrolled calculus.
Keywords: KPZ equation; Paracontrolled calculus; Invariant measure; Cole–Hopf solution (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301692
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:4:p:1238-1293
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.07.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().