Covariance of stochastic integrals with respect to fractional Brownian motion
Yohaï Maayan and
Eddy Mayer-Wolf
Stochastic Processes and their Applications, 2018, vol. 128, issue 5, 1635-1651
Abstract:
We find an explicit expression for the cross-covariance between stochastic integral processes with respect to a d-dimensional fractional Brownian motion (fBm) Bt with Hurst parameter H>12, where the integrands are vector fields applied to Bt. It provides, for example, a direct alternative proof of Y. Hu and D. Nualart’s result that the stochastic integral component in the fractional Bessel process decomposition is not itself a fractional Brownian motion.
Keywords: Fractional Brownian motion; Divergence integral; Stochastic integral; Fractional Bessel process (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301977
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:5:p:1635-1651
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.08.006
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().