EconPapers    
Economics at your fingertips  
 

Covariance of stochastic integrals with respect to fractional Brownian motion

Yohaï Maayan and Eddy Mayer-Wolf

Stochastic Processes and their Applications, 2018, vol. 128, issue 5, 1635-1651

Abstract: We find an explicit expression for the cross-covariance between stochastic integral processes with respect to a d-dimensional fractional Brownian motion (fBm) Bt with Hurst parameter H>12, where the integrands are vector fields applied to Bt. It provides, for example, a direct alternative proof of Y. Hu and D. Nualart’s result that the stochastic integral component in the fractional Bessel process decomposition is not itself a fractional Brownian motion.

Keywords: Fractional Brownian motion; Divergence integral; Stochastic integral; Fractional Bessel process (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301977
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:5:p:1635-1651

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.08.006

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:5:p:1635-1651