Convex integral functionals of regular processes
Teemu Pennanen and
Ari-Pekka Perkkiö
Stochastic Processes and their Applications, 2018, vol. 128, issue 5, 1652-1677
Abstract:
This article gives dual representations for convex integral functionals on the linear space of regular processes. This space turns out to be a Banach space containing many more familiar classes of stochastic processes and its dual can be identified with the space of optional random measures with essentially bounded variation. Combined with classical Banach space techniques, our results allow for a systematic treatment of stochastic optimization problems over BV processes and, in particular, yields a maximum principle for a general class of singular stochastic control problems.
Keywords: Regular process; Integral functional; Conjugate duality; Singular stochastic control (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301989
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:5:p:1652-1677
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.08.007
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().