Itô’s calculus under sublinear expectations via regularity of PDEs and rough paths
Xin Guo and
Chen Pan
Stochastic Processes and their Applications, 2018, vol. 128, issue 5, 1711-1749
Abstract:
In this paper, we first study the martingale problem in a sublinear expectation space. The critical tool is the Evans–Krylov theorem on regularity properties for solutions of fully nonlinear PDEs. Based on the analysis for the martingale problem and inspired by the rough path theory, we then develop stochastic calculus with respect to a general stochastic process, and derive an Itô type formula and the integration-by-parts formula. Our framework is analytic in that it does not rely on the probabilistic concept of “independence” as in the G-expectation theory.
Keywords: Fully nonlinear PDEs; Martingale problem; Nonlinear expectation; Stochastic integral; Itô’s formula; Rough path theory (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917301990
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:5:p:1711-1749
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.08.008
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().