EconPapers    
Economics at your fingertips  
 

Persistence probabilities for stationary increment processes

Frank Aurzada, Nadine Guillotin-Plantard and Françoise Pène

Stochastic Processes and their Applications, 2018, vol. 128, issue 5, 1750-1771

Abstract: We study the persistence probability for processes with stationary increments. Our results apply to a number of examples: sums of stationary correlated random variables whose scaling limit is fractional Brownian motion; random walks in random sceneries; random processes in Brownian scenery; and the Matheron–de Marsily model in Z2 with random orientations of the horizontal layers. Using a new approach, strongly related to the study of the range, we obtain an upper bound of the optimal order in general and improved lower bounds (compared to previous literature) for many specific processes.

Keywords: Fractional Brownian motion; Random walk in random scenery; Persistence (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491530048X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:5:p:1750-1771

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.07.016

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:5:p:1750-1771