Systems of stochastic Poisson equations: Hitting probabilities
Marta Sanz-Solé and
Noèlia Viles
Stochastic Processes and their Applications, 2018, vol. 128, issue 6, 1857-1888
Abstract:
We consider a d-dimensional random field u=(u(x),x∈D) that solves a system of elliptic stochastic equations on a bounded domain D⊂Rk, with additive white noise and spatial dimension k=1,2,3. Properties of u and its probability law are proved. For Gaussian solutions, using results from Dalang and Sanz-Solé (2009), we establish upper and lower bounds on hitting probabilities in terms of the Hausdorff measure and Bessel–Riesz capacity, respectively. This relies on precise estimates of the canonical distance of the process or, equivalently, on L2 estimates of increments of the Green function of the Laplace equation.
Keywords: Systems of stochastic Poisson equations; Hitting probabilities; Capacity; Hausdorff measure (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302053
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:6:p:1857-1888
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.08.014
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().