The relation between quenched and annealed Lyapunov exponents in random potential on trees
Gundelinde Maria Wiegel
Stochastic Processes and their Applications, 2018, vol. 128, issue 6, 1988-2006
Abstract:
Our subject of interest is a simple symmetric random walk on the integers which faces a random risk to be killed. This risk is described by random potentials, which are defined by a sequence of independent and identically distributed non-negative random variables. To determine the risk of taking a walk in these potentials we consider the decay of the Green function. There are two possible tools to describe this decay: The quenched Lyapunov exponent and the annealed Lyapunov exponent. It turns out that on the integers and on regular trees we can state a precise relation between these two.
Keywords: Random walks; Random potential; Lyapunov exponents; Homogeneous trees; Relative entropy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302193
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:6:p:1988-2006
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.08.020
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().