EconPapers    
Economics at your fingertips  
 

Limit theory for the empirical extremogram of random fields

Sven Buhl and Claudia Klüppelberg

Stochastic Processes and their Applications, 2018, vol. 128, issue 6, 2060-2082

Abstract: Regularly varying stochastic processes are able to model extremal dependence between process values at locations in random fields. We investigate the empirical extremogram as an estimator of dependence in the extremes. We provide conditions to ensure asymptotic normality of the empirical extremogram centred by a pre-asymptotic version. The proof relies on a CLT for exceedance variables. For max-stable processes with Fréchet margins we provide conditions such that the empirical extremogram centred by its true version is asymptotically normal. The results of this paper apply to a variety of spatial and space–time processes, and to time series models. We apply our results to max-moving average processes and Brown–Resnick processes.

Keywords: Brown–Resnick process; Empirical extremogram; Extremogram; Max-moving average process; Max-stable process; Random field; Spatial CLT; Spatial mixing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030441491730217X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:6:p:2060-2082

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.08.018

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:6:p:2060-2082