Transportation distances and noise sensitivity of multiplicative Lévy SDE with applications
Jan Gairing,
Michael Högele and
Tetiana Kosenkova
Stochastic Processes and their Applications, 2018, vol. 128, issue 7, 2153-2178
Abstract:
This article assesses the distance between the laws of stochastic differential equations with multiplicative Lévy noise on path space in terms of their characteristics. The notion of transportation distance on the set of Lévy kernels introduced by Kosenkova and Kulik yields a natural and statistically tractable upper bound on the noise sensitivity. This extends recent results for the additive case in terms of coupling distances to the multiplicative case. The strength of this notion is shown in a statistical implementation for simulations and the example of a benchmark time series in paleoclimate.
Keywords: Stochastic differential equations; Multiplicative Lévy noise; Lévy type processes; Heavy-tailed distributions; Model selection; Wasserstein distance; Time series (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302223
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:7:p:2153-2178
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.09.003
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().