EconPapers    
Economics at your fingertips  
 

Spread of a catalytic branching random walk on a multidimensional lattice

Ekaterina Vl. Bulinskaya

Stochastic Processes and their Applications, 2018, vol. 128, issue 7, 2325-2340

Abstract: For a supercritical catalytic branching random walk on Zd, d∈N, with an arbitrary finite catalysts set we study the spread of particles population as time grows to infinity. It is shown that in the result of the proper normalization of the particles positions in the limit there are a.s. no particles outside the closed convex surface in Rd which we call the propagation front and, under condition of infinite number of visits of the catalysts set, a.s. there exist particles on the propagation front. We also demonstrate that the propagation front is asymptotically densely populated and derive its alternative representation.

Keywords: Branching random walk; Supercritical regime; Spread of population; Propagation front; Many-to-one lemma (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302260
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:7:p:2325-2340

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.09.007

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:7:p:2325-2340