EconPapers    
Economics at your fingertips  
 

Fractional diffusion-type equations with exponential and logarithmic differential operators

Luisa Beghin

Stochastic Processes and their Applications, 2018, vol. 128, issue 7, 2427-2447

Abstract: We deal with some extensions of the space-fractional diffusion equation, which is satisfied by the density of a stable process (see Mainardi et al. (2001)): the first equation considered here is obtained by adding an exponential differential (or shift) operator expressed in terms of the Riesz–Feller derivative. We prove that this produces a random component in the time-argument of the corresponding stable process, which is represented by the so-called Poisson process with drift. Analogously, if we add, to the space-fractional diffusion equation, a logarithmic differential operator involving the Riesz-derivative, we obtain, as a solution, the transition semigroup of a stable process subordinated by an independent gamma subordinator with drift. Finally, we show that an extension of the space-fractional diffusion equation, containing both the fractional shift operator and the Feller integral, is satisfied by the transition density of the process obtained by time-changing the stable process with an independent linear birth process with drift.

Keywords: Fractional exponential operator; Fractional logarithmic operator; Riesz–Feller derivative; Gamma process with drift; Yule–Furry process (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302326
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:7:p:2427-2447

Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spa.2017.09.013

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by T. Mikosch

More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:spapps:v:128:y:2018:i:7:p:2427-2447