Large deviations for the empirical measure of a diffusion via weak convergence methods
Paul Dupuis and
David Lipshutz
Stochastic Processes and their Applications, 2018, vol. 128, issue 8, 2581-2604
Abstract:
We consider the large deviation principle for the empirical measure of a diffusion in Euclidean space, which was first established by Donsker and Varadhan. We employ a weak convergence approach and obtain a characterization for the rate function that is dual to the one obtained by Donsker and Varadhan, and which allows us to evaluate the variational form of the rate function for both reversible and nonreversible diffusions.
Keywords: Diffusion; Empirical measure; Large deviations; Weak convergence method (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302491
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:8:p:2581-2604
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.09.020
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().