Time inhomogeneous Stochastic Differential Equations involving the local time of the unknown process, and associated parabolic operators
Pierre Étoré and
Miguel Martinez
Stochastic Processes and their Applications, 2018, vol. 128, issue 8, 2642-2687
Abstract:
In this paper we study time inhomogeneous versions of one-dimensional Stochastic Differential Equations (SDE) involving the Local Time of the unknown process on curves. After proving existence and uniqueness for these SDEs under mild assumptions, we explore their link with Parabolic Differential Equations (PDE) with transmission conditions. We study the regularity of solutions of such PDEs and ensure the validity of a Feynman–Kac representation formula. These results are then used to characterize the solutions of these SDEs as time inhomogeneous Markov Feller processes.
Keywords: Stochastic Differential Equations with Local Time; Time inhomogeneous Skew Brownian Motion; Divergence Form Operators; Feynman–Kac representation formula; Time inhomogeneous Markov processes (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302478
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:8:p:2642-2687
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.09.018
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().