Asymptotical properties of distributions of isotropic Lévy processes
Panki Kim and
Ante Mimica
Stochastic Processes and their Applications, 2018, vol. 128, issue 8, 2688-2709
Abstract:
In this paper, we establish the precise asymptotic behaviors of the tail probability and the transition density of a large class of isotropic Lévy processes when the scaling order is between 0 and 2 including 2. We also obtain the precise asymptotic behaviors of the tail probability of subordinators when the scaling order is between 0 and 1 including 1.
Keywords: Asymptotic; Transition density; Lévy process; Unimodal Lévy process; Heat kernel; Laplace exponent; Lévy measure; Subordinator; Subordinate Brownian motion (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302466
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:8:p:2688-2709
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.09.017
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().