A one-dimensional version of the random interlacements
Darcy Camargo and
Serguei Popov
Stochastic Processes and their Applications, 2018, vol. 128, issue 8, 2750-2778
Abstract:
We base ourselves on the construction of the two-dimensional random interlacements (Comets et al., 2016) to define the one-dimensional version of the process. For this, we consider simple random walks conditioned on never hitting the origin. We compare this process to the conditional random walk on the ring graph. Our results are the convergence of the vacant set on the ring graph to the vacant set of one-dimensional random interlacements, a central limit theorem for the interlacements’ local time and the convergence in law of the local times of the conditional walk on the ring graph to the interlacements’ local times.
Keywords: Random interlacements; Local times; Occupation times; Simple random walk; Doob’s h-transform (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304414917302521
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:128:y:2018:i:8:p:2750-2778
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spa.2017.10.001
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().